- Äɲ䵤줿¹Ô¤Ï¤³¤Î¤è¤¦¤Ëɽ¼¨¤µ¤ì¤Þ¤¹¡£
- ºï½ü¤µ¤ì¤¿¹Ô¤Ï
¤³¤Î¤è¤¦¤Ëɽ¼¨¤µ¤ì¤Þ¤¹¡£
!! »°³Ñ´Ø¿ô
sin/cos ¤Î¶á»÷Ãͤòµá¤á¤ë
¦Ð¤Ë¤Ä¤¤¤Æ¤Ï tips-PI_FFT
!»°³Ñ´Ø¿ô·Ï¡¢´ðËÜ12¥Ñ¥¿¡¼¥ó¡ÊÍסÖľ³Ñ»°³Ñ·Á¡×¡Ë
¢¤ABC ¤Ë¤ª¤¤¤Æ
¢ÜACB ¤¬Ä¾³Ñ/
¢ÜABC ¤ò¦È , ¢ÜBCA¤ò¦Õ , ¢ÜCAB¤ò¦Ó
ÊÕAB ¤ò r ( ¼ÐÊÕ )(ÊÕc)
ÊÕBC ¤ò x ( ÄìÊÕ )(ÊÕa)
ÊÕCA ¤ò y ( ¹â¤µ )(ÊÕb)
¤È¤·¤¿»þ
r = x / cos¦È :¡Ör¡×¤ò¡Öx¡×¤È¡Ö¦È¡×¤«¤éµá¤á¤ë
r = y / sin¦È :¡Ör¡×¤ò¡Öy¡×¤È¡Ö¦È¡×¤«¤éµá¤á¤ë
r = ¢å(x2 + y2) :¡Ör¡×¤ò¡Öx¡×¤È¡Öy¡×¤«¤éµá¤á¤ë
x = cos¦È * r :¡Öx¡×¤ò¡Ö¦È¡×¤È¡Ör¡×¤«¤éµá¤á¤ë
x = y / tan¦È :¡Öx¡×¤ò¡Öy¡×¤È¡Ö¦È¡×¤«¤éµá¤á¤ë
x = ¢å(r2 - y2) :¡Öx¡×¤ò¡Ör¡×¤È¡Öy¡×¤«¤éµá¤á¤ë
y = sin¦È * r :¡Öy¡×¤ò¡Ö¦È¡×¤È¡Ör¡×¤«¤éµá¤á¤ë
y = tan¦È * x :¡Öy¡×¤ò¡Ö¦È¡×¤È¡Öx¡×¤«¤éµá¤á¤ë
y = ¢å(r2 - x2) :¡Öy¡×¤ò¡Ör¡×¤È¡Öx¡×¤«¤éµá¤á¤ë
¦È = asin(y / r) :¡Ö¦È¡×¤ò¡Öy¡×¤È¡Ör¡×¤«¤éµá¤á¤ë
¦È = acos(x / r) :¡Ö¦È¡×¤ò¡Öx¡×¤È¡Ör¡×¤«¤éµá¤á¤ë
¦È = atan(y / x) :¡Ö¦È¡×¤ò¡Öy¡×¤È¡Öx¡×¤«¤éµá¤á¤ë (tan^-1 ¤È¤â½ñ¤¯)
!Àµ¸¹ÄêÍý
(b/sin¦È)=(c/sin¦Õ¡Ë=(a/sin¦³)
³Ñ¡Ê¢Ü¡Ë¤È¸þ¤«¤¤¹ç¤¦Êդǡ£¡£(ľ³Ñ»°³Ñ·Á¤À¤Èʬ¤«¤ê¤Å¤é¤¤¡Ë
*https://www.nli-research.co.jp/report/detail/id=67383?pno=1&site=nli
def seigen(AA, aa):
"""
Àµ¸¹ÄêÍý
AA : degree
sin(AA) / aa = 1/(2R)
sin(A)/a = sin(B)/b = sin(C)/c = 1/(2R)
¤Ä¤Þ¤ê¡¢ sin(A) = a/(2R)
ùABC¤Ë¤ª¤¤¤Æ¡¢ÊÕa, b, c¤Ï¤½¤ì¤¾¤ì³ÑA, B, C¤ÎÂÐÊÕ
BC=a, CA=b, AB=c ³°ÀܱߤÎȾ·ÂR
"""
rad = sympy.rad(AA)
ret = sympy.N ( sympy.sin(rad) / aa )
return ret
!;¸¹ÄêÍý
a^2=b^2+c^2-2*b*c*cos¦³
£²¤Ä¤ÎÊդȤ½¤ì¤Ë¶´¤Þ¤ì¤ë³Ñ¤ÎÂ礤µ¡Êcos)¤Ç¡£¡£
*https://www.nli-research.co.jp/report/detail/id=67383?pno=1&site=nli
def yogen2(a, b, c):
""" ÂèÆó;¸¹ÄêÍý
cos(C) = (a^2 + b^2 - c^2) / (2ab)
"""
CC = (a**2 + b**2 - c**2) / (2 * a * b)
return CC
def yogen2a(a, b, C):
""" ÂèÆó;¸¹ÄêÍý
c^2 = (a^2 + b^2 - (2a*b*cos(C))
"""
CC = sympy.rad(C)
ret2 = (a**2 + b**2 ) - (2 * a * b * sympy.cos(CC))
ret = sympy.sqrt(ret2)
return ret
def yogen1(b, c, B, C):
"""
Âè°ì;¸¹ÄêÍý
ùABC ¤Ë¤ª¤¤¤Æ
a = BC, b = CA, c = AB
¢ÜCBA = A, ¢ÜABC = B, ¢ÜBCA = C
a = b*cos(C) + c*cos(B)
b = c*cos(A) + a*cos(C)
c = a*cos(B) + b*cos(A)
"""
ret = b*sympy.cos(C) + c*sympy.cos(B)
return ret
!²ÃË¡ÄêÍý
sin(¦È+¦Õ)=sin¦È*cos¦Õ+cos¦È*cos¦Õ
cos(¦È+¦Õ)=cos¦È*cos¦Õ-sin¦È*sin¦Õ
(¡Ê¦È¡¼¦Õ¡Ë¤Î¾ì¹ç¤ÏÉ乿¤òȿž¤¹¤ë )
! ¶á»÷ÃÍ SIN ( ¥Þ¥¯¥í¡¼¥ê¥óŸ³« ) Tips-maxima
SIN(X) = x -(x^3)/(3!)+(x^5)/(5!)-(x^7)/(7!)+(x^9)/(9!)
maxima
(%i9) f(x):=sum(((-1)^k)*(x^(2*k+1))/(2*k+1)!,k,0,n),simpsum;
¸ÇÄêÃÍ
(%i10) f(x):=sum(((-1)^k)*(x^(2*k+1))/(2*k+1)!,k,0,10),simpsum;
! ¶á»÷ÃÍ COS Tips-maxima
COS(X) = 1 -(x^2)/2! +(x^4)/4! -(x^6)/6! +(x^8)/8!
maxima
(%i12) sum(((-1)^k)*(x^(2*k)/(2*k)!),k,0,n),simpsum;
¸ÇÄêÃÍ
(%i13) f(x) := sum(((-1)^k)*(x^(2*k)/(2*k)!),k,0,10),simpsum;
»î¤·¤Æ¤ß¤ë
(%i1) KPI:1019514486099146/324521540032945; ## 20·å
(%i1) KPI:103993/33102; ## 10·å
(%i1) dg:(30 * %pi / 180) ;
(%i2) f(x) := sum(((-1)^k)*(x^(2*k)/(2*k)!),k,0,10),simpsum;
(%i3) float(f(dg)-cos(dg)) ;
(%i4) dg:(60 * %pi / 180) ;
(%i5) float(f(dg)-cos(dg)) ;
(%o10) 7.988719676478221E-17
(%i1) dg:(30 * KPI / 180) ;
(%i2) f(x) := sum(((-1)^k)*(x^(2*k)/(2*k)!),k,0,10),simpsum;
(%i3) float(f(dg)-cos(dg)) ;
(%i4) dg:(60 * KPI / 180) ;
(%i5) float(f(dg)-cos(dg)) ;
( 17·å¤Ï¿¤¹¤®¤ë¡©¡©¡Ë
https://nc-program.s-projects.net/math6.html