¥È¥Ã¥× °ìÍ÷ ¸¡º÷ ¥Ø¥ë¥× RSS ¥í¥°¥¤¥ó

Tips-sincos¤ÎÊѹ¹ÅÀ

  • Äɲ䵤줿¹Ô¤Ï¤³¤Î¤è¤¦¤Ëɽ¼¨¤µ¤ì¤Þ¤¹¡£
  • ºï½ü¤µ¤ì¤¿¹Ô¤Ï¤³¤Î¤è¤¦¤Ëɽ¼¨¤µ¤ì¤Þ¤¹¡£
!! »°³Ñ´Ø¿ô
 sin/cos ¤Î¶á»÷Ãͤòµá¤á¤ë
¦Ð¤Ë¤Ä¤¤¤Æ¤Ï tips-PI_FFT

!»°³Ñ´Ø¿ô·Ï¡¢´ðËÜ12¥Ñ¥¿¡¼¥ó¡ÊÍסÖľ³Ñ»°³Ñ·Á¡×¡Ë
¢¤ABC ¤Ë¤ª¤¤¤Æ 
 ¢ÜACB ¤¬Ä¾³Ñ/ 
 ¢ÜABC ¤ò¦È , ¢ÜBCA¤ò¦Õ , ¢ÜCAB¤ò¦Ó
 ÊÕAB ¤ò r ( ¼ÐÊÕ )(ÊÕc)
 ÊÕBC ¤ò x ( ÄìÊÕ )(ÊÕa)
 ÊÕCA ¤ò y ( ¹â¤µ )(ÊÕb)
¤È¤·¤¿»þ

 r = x / cos¦È    :¡Ör¡×¤ò¡Öx¡×¤È¡Ö¦È¡×¤«¤éµá¤á¤ë
 r = y / sin¦È    :¡Ör¡×¤ò¡Öy¡×¤È¡Ö¦È¡×¤«¤éµá¤á¤ë
 r = ¢å(x2 + y2)   :¡Ör¡×¤ò¡Öx¡×¤È¡Öy¡×¤«¤éµá¤á¤ë

 x = cos¦È * r    :¡Öx¡×¤ò¡Ö¦È¡×¤È¡Ör¡×¤«¤éµá¤á¤ë 
 x = y / tan¦È    :¡Öx¡×¤ò¡Öy¡×¤È¡Ö¦È¡×¤«¤éµá¤á¤ë 
 x = ¢å(r2 - y2)   :¡Öx¡×¤ò¡Ör¡×¤È¡Öy¡×¤«¤éµá¤á¤ë

 y = sin¦È * r    :¡Öy¡×¤ò¡Ö¦È¡×¤È¡Ör¡×¤«¤éµá¤á¤ë
 y = tan¦È * x    :¡Öy¡×¤ò¡Ö¦È¡×¤È¡Öx¡×¤«¤éµá¤á¤ë
 y = ¢å(r2 - x2)   :¡Öy¡×¤ò¡Ör¡×¤È¡Öx¡×¤«¤éµá¤á¤ë

 ¦È = asin(y / r) :¡Ö¦È¡×¤ò¡Öy¡×¤È¡Ör¡×¤«¤éµá¤á¤ë
 ¦È = acos(x / r) :¡Ö¦È¡×¤ò¡Öx¡×¤È¡Ör¡×¤«¤éµá¤á¤ë
 ¦È = atan(y / x) :¡Ö¦È¡×¤ò¡Öy¡×¤È¡Öx¡×¤«¤éµá¤á¤ë (tan^-1 ¤È¤â½ñ¤¯)

!Àµ¸¹ÄêÍý
 (b/sin¦È)=(c/sin¦Õ¡Ë=(a/sin¦³)
 ³Ñ¡Ê¢Ü¡Ë¤È¸þ¤«¤¤¹ç¤¦Êդǡ£¡£(ľ³Ñ»°³Ñ·Á¤À¤Èʬ¤«¤ê¤Å¤é¤¤¡Ë
*https://www.nli-research.co.jp/report/detail/id=67383?pno=1&site=nli

 def seigen(AA, aa):
    """ 
    Àµ¸¹ÄêÍý
    AA : degree
    sin(AA) / aa = 1/(2R)
    sin(A)/a = sin(B)/b = sin(C)/c = 1/(2R)
    ¤Ä¤Þ¤ê¡¢ sin(A) = a/(2R)
    ­ùABC¤Ë¤ª¤¤¤Æ¡¢ÊÕa, b, c¤Ï¤½¤ì¤¾¤ì³ÑA, B, C¤ÎÂÐÊÕ
    BC=a, CA=b, AB=c ³°ÀܱߤÎȾ·ÂR
    """
    rad = sympy.rad(AA)
    ret = sympy.N ( sympy.sin(rad) / aa )
    return ret



!;¸¹ÄêÍý
 a^2=b^2+c^2-2*b*c*cos¦³
 £²¤Ä¤ÎÊդȤ½¤ì¤Ë¶´¤Þ¤ì¤ë³Ñ¤ÎÂ礭¤µ¡Êcos)¤Ç¡£¡£
*https://www.nli-research.co.jp/report/detail/id=67383?pno=1&site=nli


 def yogen2(a, b, c):
    """ ÂèÆó;¸¹ÄêÍý 
    cos(C) = (a^2 + b^2 - c^2) / (2ab)
    """
    CC = (a**2 + b**2 - c**2) / (2 * a * b)
    return CC
  
 def yogen2a(a, b, C):
    """ ÂèÆó;¸¹ÄêÍý 
    c^2 = (a^2 + b^2 - (2a*b*cos(C))
    """
    CC = sympy.rad(C)
    ret2 = (a**2 + b**2 ) - (2 * a * b * sympy.cos(CC))
    ret = sympy.sqrt(ret2)
    return ret

 def yogen1(b, c, B, C):
    """
    Âè°ì;¸¹ÄêÍý
    ­ùABC ¤Ë¤ª¤¤¤Æ
    a = BC, b = CA, c = AB
    ¢ÜCBA = A, ¢ÜABC = B, ¢ÜBCA = C
    a = b*cos(C) + c*cos(B)
    b = c*cos(A) + a*cos(C)
    c = a*cos(B) + b*cos(A)
    """
    ret = b*sympy.cos(C) + c*sympy.cos(B)
    return ret


!²ÃË¡ÄêÍý
 sin(¦È+¦Õ)=sin¦È*cos¦Õ+cos¦È*cos¦Õ
 cos(¦È+¦Õ)=cos¦È*cos¦Õ-sin¦È*sin¦Õ
 (¡Ê¦È¡¼¦Õ¡Ë¤Î¾ì¹ç¤ÏÉ乿¤òȿž¤¹¤ë )

! ¶á»÷ÃÍ SIN ( ¥Þ¥¯¥í¡¼¥ê¥óŸ³« ) Tips-maxima
 SIN(X) = x -(x^3)/(3!)+(x^5)/(5!)-(x^7)/(7!)+(x^9)/(9!)
 maxima
 (%i9)  f(x):=sum(((-1)^k)*(x^(2*k+1))/(2*k+1)!,k,0,n),simpsum;
 ¸ÇÄêÃÍ
 (%i10) f(x):=sum(((-1)^k)*(x^(2*k+1))/(2*k+1)!,k,0,10),simpsum;


! ¶á»÷ÃÍ COS Tips-maxima
 COS(X) = 1 -(x^2)/2! +(x^4)/4! -(x^6)/6! +(x^8)/8!
 maxima
 (%i12) sum(((-1)^k)*(x^(2*k)/(2*k)!),k,0,n),simpsum;
 ¸ÇÄêÃÍ
 (%i13) f(x) := sum(((-1)^k)*(x^(2*k)/(2*k)!),k,0,10),simpsum;

 »î¤·¤Æ¤ß¤ë
 (%i1) KPI:1019514486099146/324521540032945; ## 20·å
 (%i1) KPI:103993/33102; ## 10·å
 (%i1) dg:(30 * %pi / 180) ;
 (%i2) f(x) := sum(((-1)^k)*(x^(2*k)/(2*k)!),k,0,10),simpsum;
 (%i3) float(f(dg)-cos(dg)) ;
 (%i4) dg:(60 * %pi / 180) ;
 (%i5) float(f(dg)-cos(dg)) ;
 (%o10)                       7.988719676478221E-17
 (%i1) dg:(30 * KPI / 180) ;
 (%i2) f(x) := sum(((-1)^k)*(x^(2*k)/(2*k)!),k,0,10),simpsum;
 (%i3) float(f(dg)-cos(dg)) ;
 (%i4) dg:(60 * KPI / 180) ;
 (%i5) float(f(dg)-cos(dg)) ; 
 ( 17·å¤Ï¿¤¹¤®¤ë¡©¡©¡Ë

https://nc-program.s-projects.net/math6.html