!! »°³Ñ´Ø¿ô sin/cos ¤Î¶á»÷Ãͤòµá¤á¤ë ¦Ð¤Ë¤Ä¤¤¤Æ¤Ï tips-PI_FFT !»°³Ñ´Ø¿ô·Ï¡¢´ðËÜ12¥Ñ¥¿¡¼¥ó¡ÊÍסÖľ³Ñ»°³Ñ·Á¡×¡Ë ¢¤ABC ¤Ë¤ª¤¤¤Æ ¢ÜACB ¤¬Ä¾³Ñ/ ¢ÜABC ¤ò¦È , ¢ÜBCA¤ò¦Õ , ¢ÜCAB¤ò¦Ó ÊÕAB ¤ò r ( ¼ÐÊÕ )(ÊÕc) ÊÕBC ¤ò x ( ÄìÊÕ )(ÊÕa) ÊÕCA ¤ò y ( ¹â¤µ )(ÊÕb) ¤È¤·¤¿»þ r = x / cos¦È :¡Ör¡×¤ò¡Öx¡×¤È¡Ö¦È¡×¤«¤éµá¤á¤ë r = y / sin¦È :¡Ör¡×¤ò¡Öy¡×¤È¡Ö¦È¡×¤«¤éµá¤á¤ë r = ¢å(x2 + y2) :¡Ör¡×¤ò¡Öx¡×¤È¡Öy¡×¤«¤éµá¤á¤ë x = cos¦È * r :¡Öx¡×¤ò¡Ö¦È¡×¤È¡Ör¡×¤«¤éµá¤á¤ë x = y / tan¦È :¡Öx¡×¤ò¡Öy¡×¤È¡Ö¦È¡×¤«¤éµá¤á¤ë x = ¢å(r2 - y2) :¡Öx¡×¤ò¡Ör¡×¤È¡Öy¡×¤«¤éµá¤á¤ë y = sin¦È * r :¡Öy¡×¤ò¡Ö¦È¡×¤È¡Ör¡×¤«¤éµá¤á¤ë y = tan¦È * x :¡Öy¡×¤ò¡Ö¦È¡×¤È¡Öx¡×¤«¤éµá¤á¤ë y = ¢å(r2 - x2) :¡Öy¡×¤ò¡Ör¡×¤È¡Öx¡×¤«¤éµá¤á¤ë ¦È = asin(y / r) :¡Ö¦È¡×¤ò¡Öy¡×¤È¡Ör¡×¤«¤éµá¤á¤ë ¦È = acos(x / r) :¡Ö¦È¡×¤ò¡Öx¡×¤È¡Ör¡×¤«¤éµá¤á¤ë ¦È = atan(y / x) :¡Ö¦È¡×¤ò¡Öy¡×¤È¡Öx¡×¤«¤éµá¤á¤ë (tan^-1 ¤È¤â½ñ¤¯) !Àµ¸¹ÄêÍý (b/sin¦È)=(c/sin¦Õ¡Ë=(a/sin¦³) ³Ñ¡Ê¢Ü¡Ë¤È¸þ¤«¤¤¹ç¤¦Êդǡ£¡£(ľ³Ñ»°³Ñ·Á¤À¤Èʬ¤«¤ê¤Å¤é¤¤¡Ë *https://www.nli-research.co.jp/report/detail/id=67383?pno=1&site=nli def seigen(AA, aa): """ Àµ¸¹ÄêÍý AA : degree sin(AA) / aa = 1/(2R) sin(A)/a = sin(B)/b = sin(C)/c = 1/(2R) ¤Ä¤Þ¤ê¡¢ sin(A) = a/(2R) ­ùABC¤Ë¤ª¤¤¤Æ¡¢ÊÕa, b, c¤Ï¤½¤ì¤¾¤ì³ÑA, B, C¤ÎÂÐÊÕ BC=a, CA=b, AB=c ³°ÀܱߤÎȾ·ÂR """ rad = sympy.rad(AA) ret = sympy.N ( sympy.sin(rad) / aa ) return ret !;¸¹ÄêÍý a^2=b^2+c^2-2*b*c*cos¦³ £²¤Ä¤ÎÊդȤ½¤ì¤Ë¶´¤Þ¤ì¤ë³Ñ¤ÎÂ礭¤µ¡Êcos)¤Ç¡£¡£ *https://www.nli-research.co.jp/report/detail/id=67383?pno=1&site=nli def yogen2(a, b, c): """ ÂèÆó;¸¹ÄêÍý cos(C) = (a^2 + b^2 - c^2) / (2ab) """ CC = (a**2 + b**2 - c**2) / (2 * a * b) return CC def yogen2a(a, b, C): """ ÂèÆó;¸¹ÄêÍý c^2 = (a^2 + b^2 - (2a*b*cos(C)) """ CC = sympy.rad(C) ret2 = (a**2 + b**2 ) - (2 * a * b * sympy.cos(CC)) ret = sympy.sqrt(ret2) return ret def yogen1(b, c, B, C): """ Âè°ì;¸¹ÄêÍý ­ùABC ¤Ë¤ª¤¤¤Æ a = BC, b = CA, c = AB ¢ÜCBA = A, ¢ÜABC = B, ¢ÜBCA = C a = b*cos(C) + c*cos(B) b = c*cos(A) + a*cos(C) c = a*cos(B) + b*cos(A) """ ret = b*sympy.cos(C) + c*sympy.cos(B) return ret !²ÃË¡ÄêÍý sin(¦È+¦Õ)=sin¦È*cos¦Õ+cos¦È*cos¦Õ cos(¦È+¦Õ)=cos¦È*cos¦Õ-sin¦È*sin¦Õ (¡Ê¦È¡¼¦Õ¡Ë¤Î¾ì¹ç¤ÏÉ乿¤òȿž¤¹¤ë ) ! ¶á»÷ÃÍ SIN ( ¥Þ¥¯¥í¡¼¥ê¥óŸ³« ) Tips-maxima SIN(X) = x -(x^3)/(3!)+(x^5)/(5!)-(x^7)/(7!)+(x^9)/(9!) maxima (%i9) f(x):=sum(((-1)^k)*(x^(2*k+1))/(2*k+1)!,k,0,n),simpsum; ¸ÇÄêÃÍ (%i10) f(x):=sum(((-1)^k)*(x^(2*k+1))/(2*k+1)!,k,0,10),simpsum; ! ¶á»÷ÃÍ COS Tips-maxima COS(X) = 1 -(x^2)/2! +(x^4)/4! -(x^6)/6! +(x^8)/8! maxima (%i12) sum(((-1)^k)*(x^(2*k)/(2*k)!),k,0,n),simpsum; ¸ÇÄêÃÍ (%i13) f(x) := sum(((-1)^k)*(x^(2*k)/(2*k)!),k,0,10),simpsum; »î¤·¤Æ¤ß¤ë (%i1) KPI:1019514486099146/324521540032945; ## 20·å (%i1) KPI:103993/33102; ## 10·å (%i1) dg:(30 * %pi / 180) ; (%i2) f(x) := sum(((-1)^k)*(x^(2*k)/(2*k)!),k,0,10),simpsum; (%i3) float(f(dg)-cos(dg)) ; (%i4) dg:(60 * %pi / 180) ; (%i5) float(f(dg)-cos(dg)) ; (%o10) 7.988719676478221E-17 (%i1) dg:(30 * KPI / 180) ; (%i2) f(x) := sum(((-1)^k)*(x^(2*k)/(2*k)!),k,0,10),simpsum; (%i3) float(f(dg)-cos(dg)) ; (%i4) dg:(60 * KPI / 180) ; (%i5) float(f(dg)-cos(dg)) ; ( 17·å¤Ï¿¤¹¤®¤ë¡©¡©¡Ë https://nc-program.s-projects.net/math6.html